Numerical Simulation on Ecological Interactions in Time and Space
نویسنده
چکیده
The most formal and systematic tool to simplify a real-world phenomenon dealing with the interrelationships between organisms and their environment, including the interaction between each other is an ecological model. Of course, it is usually created for one or more purposes, for example, to gain system understanding, to forecast the future state of the system, and to develop new hypotheses. Not only that, a good model should also reach a balance between the complexities of the real-world system, which is too difficult to solve, and the need of simple formulation and valid analytic model, which can be explicitly solved. Ecological modeling has a long and rich history. So far many sophisticated ecological models have been developed in all fields of ecology such as the ecology of individuals including physiological ecology, the ecology of populations, and the study of ecosystems (classified by Hofbauer & Sigmund, 1988; Roughgarden, 1996). Ecological phenomenon can often be simplified by making some assumptions and studying it with suitable time scales and spatial interactions. It should be noted that a simple deterministic system could behave dramatically unlike when its time scale and its spatial interaction are changed. Therefore, the next coming sections aim to convince the significance of time scales and spatial interactions.
منابع مشابه
A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملQuasi-Static Numerical Simulation of Missile Staging
In this study, the missile staging process by implementing a side-injected jet is simulated numerically. The problem is considered to be axisymmetric and the thin shear layer approximation of Navier-Stokes equations along with an algebraic turbulence model is used in a quasi-static form for the calculations. The free stream corresponds to a very high altitude flight condition with a Mach number...
متن کاملQuasi-Static Numerical Simulation of Missile Staging
In this study, the missile staging process by implementing a side-injected jet is simulated numerically. The problem is considered to be axisymmetric and the thin shear layer approximation of Navier-Stokes equations along with an algebraic turbulence model is used in a quasi-static form for the calculations. The free stream corresponds to a very high altitude flight condition with a Mach number...
متن کاملNumerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow
Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general...
متن کاملتاثیر ارتفاع در فرایند جدایش غیردائم موشکهای چند مرحلهای
Effect of altitude is discussed in the unsteady separation of multi stage rockets. Axisymmetric, unsteady and turbulent Navier stokes equations are solved numerically. The governing equations are split into a hyperbolic inviscid part and a parabolic diffusion part. The hyperbolic part is solved by an explicit second-order time and space of Godunov-type scheme. Moving mesh and moving boundary al...
متن کامل